skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taylor, Alan H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Regional warming and associated changes in hydrologic systems pose challenges to water supply management in river basins of the western United States and call for improved understanding of the spatial and temporal variability of runoff. We apply a network of total width, subannual width, and delta blue intensity tree-ring chronologies in combination with a monthly water balance model to identify droughts and their associated precipitationPand temperatureTfootprints in the Truckee–Carson River basin (TCRB). Stepwise regression gave reasonably accurate reconstructions, from 1688 to 1999, of seasonalPandT(e.g.,R2= 0.50 for May–SeptemberT). These were disaggregated to monthly values, which were then routed through a water balance model to generate “indirectly” reconstructed runoff. Reconstructed and observed annual runoff correlate highly (r= 0.80) from 1906 to 1999. The extended runoff record shows that twentieth-century droughts are unmatched in severity in a 300-yr context. Our water balance modeling reconstruction advances the conventional regression-based dendrochronological methods as it allows for multiple hydrologic components (evapotranspiration, snowmelt, etc.) to be evaluated. We found that imposed warming (3° and 6°C) generally exacerbated the runoff deficits in past droughts but that impact could be lessened and sometimes even reversed in some years by compensating factors, including changes in snow regime. Our results underscore the value of combining multiproxy tree-ring data with water balance modeling to place past hydrologic droughts in the context of climate change. Significance StatementWe show how water balance modeling in combination with tree-ring data helps place modern droughts in the context of the past few centuries and a warming climate. Seasonal precipitation and temperature were reconstructed from multiproxy tree-ring data for a mountainous location near Lake Tahoe, and these reconstructions were routed through a water balance model to get a record of monthly runoff, snowmelt, and other water balance variables from 1688 to 1999. The resulting extended annual runoff record highlights the unmatched severity of twentieth-century droughts. A warming of 3°C imposed on reconstructed temperature generally exacerbates the runoff anomalies in past droughts, but this effect is sometimes offset by warming-related changes in the snow regime. 
    more » « less
  2. The year-to-year variability of precipitation has significant consequences for water management and forest health. “Whiplash” describes an extreme mode of this variability in which hydroclimate switches abruptly between wet and dry conditions. In this study, a pool of total-ring-width indices from five conifer species (Abies magnifica, Juniperus grandis, Pinus ponderosa, Pinus jeffreyi, and Tsuga mertensiana) in the Sierra Nevada is used to develop reconstructions of water-year precipitation using stepwise linear regression on lagged chronologies, and the reconstructions are analyzed for their ability to track whiplash events. A nonparametric approach is introduced to statistically classify positive and negative events, and the success of matching observed events with the reconstructions is evaluated using a hypergeometric test. Results suggest that reconstructions can effectively track whiplash events, but that tracking ability differs among species and sites. Although negative (dry-to-wet) events (1921–1989) are generally tracked more consistently than positive events, Tsuga stands out for strong tracking of positive events. Tracking ability shows no clear relationship to variance explained by reconstructions, suggesting that efforts to extend whiplash records with tree-ring data should consider optimizing reconstruction models for the whiplash signal. 
    more » « less